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Abstract: - Augmentation Matrix is a compositional system and a modular instrument designed to alter the 

perception of consonant/dissonant relationships through the proportional stretching of the harmonic series. Since 

the augmentations are structurally derived from the overtone series, each partial remains a transposition of the 

original series (found in the given series through the linear functions), while the new primary intervals (found in 

the given series through the exponential functions) adopt the characteristics of “pseudo-octaves.” Utilizing 

augmentations to build sounds via additive synthesis while structuring compositions with corresponding microtonal 

mapping/tuning leads to new consonant hierarchies. With practical applications in mind, the system focuses on the 

augmentations based on tempered primary intervals. It also introduces an organization of “pivot” tones and proposes 

a method of modulating to different augmented series/sub-series, various transpositions, and the combinations of 

the two. Although all the augmented series are derived from a single structure, each of them displays a unique 

harmonic identity and structural characteristics. The resulting augmentations, their modes, chords, harmonic 

relationships and transpositions can be interpreted independently or in relation to the Western tonal system (as it 

might be influenced by the harmonic series). Augmentation Matrix can be used for sound synthesis and microtonal 

mapping as well as building melodies, harmony, rhythm, tempo, and/or form. The augmentations also 

proportionally diminish the microtonal deviations when applied to equal temperament.  

 

Keywords: - Harmonic series, microtonal composition system, spectral music, stretched harmonic theory, 

consonance/dissonance perception. 

  

 

 

1  Introduction 

Augmentation Matrix is a modular instrument and a 

compositional technique developed on the 

assumption that our consonant/dissonant perception 

is to a great degree defined by implicitly perceived 

partials - a guiding web of spectral structures that 

serves as a reference and a context to our cognition of 

musical syntaxes. While the corresponding 

relationships between sound spectra, tuning and 

musical structuring is statistically difficult to dismiss 

as a coincidence, it is not to say that musical 

traditions, including Western tonal music, simply 

follow the lines of spectral design.  It is the narrative 

of musical events, including their vertical/horizontal 

sonorities, that provides us with sonic information 

ultimately triggering our subjective responses. The 

context of a musical work, cultural conditioning, and 

psychoacoustic parameters all contribute to our 

musical perception/conception, and consequently 

shape the development of musical vocabulary. In 

Augmentation Matrix, I acknowledge the relationship 

between harmonic spectra and our musical cognition; 

specifically, I generate a matrix that systematically 

ties the augmented harmonic series to compositional 

decisions. The architecture of Augmentation Matrix 

manipulates the sound design as well as the 

microtonal mapping/tuning by utilizing a simple 

hypothesis: since the structure of the harmonic series 
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contributes to our perception of consonant/dissonant 

relationships, it is reasonable to assume that this 

structure, only augmented (or diminished), would tilt 

the consonant effect in favor of a new hierarchical 

order. In other words, “pseudo-octaves” would 

replace the exponential order of the octaves and 

stretched (or compressed) series would replace the 

linear functions of the overtones in a harmonic series.  

Each partial, in this case an inharmonic one, becomes 

the beginning of the new transposed series, in this 

case an augmented one, while the first partial (also 

enhanced by the amplitude) and all the exponential 

pairs become new primary intervals, new functional 

octaves of the augmentations. While all the 

calculations are microtonally accurate in relation to 

natural tuning, I prefer to work with the factors of 

augmentations that result in tempered primary 

intervals/“pseudo-octaves.” Similarly, to William 

Setharese’s Xentonality (1998), I match the new 

sound spectrum with tuning using an electronic 

medium applying a given augmentation structure to 

additive sound synthesis and a corresponding 

microtonal mapping. While acoustic applications of 

Augmentation Matrix disregard precise tunings and 

the manipulation of the sound spectrum (thus 

minimizing the perceptual consonance of the 

augmentation process), they also minimize the 

microtonal deviations in relation to the tempered 

system since the augmentations provide theoretically 

a “higher resolution” in relation to equal 

temperament.            

       The aesthetic framework of the resulting 

series, their modes and harmonic relationships can be 

defined independently or in relation to the Western 

tonal system viewed through its presumed 

relationship with the harmonic series. Although I 

acknowledge the possibility of linking the two, and I 

indirectly parallel augmented series with Western 

tonality, my primary interest in the harmonic series 

lies in its structure rather than its possible relationship 

with tonal music. Likewise, my intention is not to 

apply models of existing harmonic or inharmonic 

spectra to the structural fabric of my music but rather 

explore the complex sonorities resulting from the 

mathematical/theoretical manipulation of the series.  I 

am interested in finding unique characteristics of the 

individual augmentations within the overall structure 

 
1 Because each mode of vibration results from a division into some 

integral number of segments of equal length, the modes of vibration 

common to all the series in the system.  The 

development of the Augmentation Matrix has been 

influenced by spectral music, various microtonal 

systems created in the 20th century as well as 

Sethares’s research linking tuning and sound spectra 

with our perception of melodic/harmonic intervals 

(2005). On the other hand, the actual process of 

proportional alteration has not been inspired by 

musical models but rather by visual representational 

art where employment of such a technique is a 

common practice. I am particularly interested in 

augmentations distorting the initial object and I 

interpret the augmentation process of my system as a 

distortion of the original overtone series. This paper 

focuses exclusively on the mathematical aspect of the 

system and does not deal with the compositional, 

contextual, aesthetic, perception or performance 

issues related to the system. 

 

 

2  Harmonic Series  

Since the harmonic series consists of frequencies 

ascending through the integral multiples of the 

fundamental,1 there is a clear relationship between the 

fundamental and its upper partials.  If f1 indicates the 

frequency of the fundamental, then the frequencies of 

its overtones equal 2f1, 3f1, 4f1, 5f1, etc.  If any of these 

frequencies are substituted by n, therefore 2f1 = n, 3f1 

= n, 4f1 = n, or 5f1 = n, etc., it follows that each order 

of n, 2n, 3n, 4n, 5n, etc. creates a transposition of a 

given series within the series itself.  It means that each 

harmonic of the harmonic series is a fundamental of a 

new harmonic series found in the given series through 

the multiples of n (where n indicates the frequency 

value of the harmonic or the position of the harmonic 

in the given series).  It also follows that the order of 

the octaves in the harmonic series is determined by 

powers of two and if n again indicates the frequency 

value of the harmonic or its position in the series, then 

its octave repetitions equal 2n, 22n, 23n, 24n, 25n, etc. 

Except for the octave repetitions of the 

fundamental, the frequencies in the harmonic series 

are not the pitches of the tempered system used in 

Western tonal music.  After calculating the distance 

between the first thirty-two harmonics (f2) and their 

closest lower fundamentals (f1), using the formula    c 

= log f2/f1 x 3986, I determined the microtonal 

produce frequencies that are integral multiples of the fundamental 

frequency. 
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deviations of individual harmonics in relation to equal 

temperament.  That allowed me to express in cents the 

distances between the successive overtones.  Starting 

with the lowest interval of the harmonic series, I 

calculated the following order: 1200c, 702c, 498c, 

386c, 316c, 267c, 231c, 204c, 182c, 165c, 151c, 138c, 

129c, 119c, 112c, 105c, 99c, 93c, 89c, 85c, 80c, 77c, 

74c, 71c, 67c, 66c, 63c, 60c, 59c, 57c, and 55c.  This 

order serves as the foundation of my system. 

 

 

3  Augmented Harmonic Series  

Proportional augmentations of the intervals in the 

harmonic series create an infinite number of 

augmented series forming my musical system 

Augmentation Matrix. The purpose of the 

augmentations is twofold: it proportionally 

diminishes the microtonal deviations when applied to 

equal temperament and, most importantly, creates 

various series and sub-series each founded on a 

primary interval other than the octave thus offering 

new consonant hierarchies.  The relationships 

between different augmentations and their 

transpositions are clearly defined by the structure of 

the harmonic series and the process of the 

augmentation.  The system offers various modulation 

techniques and analytical models, thus creating the 

foundation for a new musical syntax.            

 

 

3.1  Microtonal Deviations 
The first feature of the augmentation process relates 

to the increased microtonal accuracy.  Namely, if the 

half–step units of the tempered scale remain 

unchanged (in other words, if we use traditional 

tempered instruments and traditional techniques of 

playing), it follows that the larger the augmentation 

of the harmonic series, the smaller the microtonal 

deviations are in relation to the proportional scale of 

the harmonic series. The exceptions are smaller 

microtonal deviations (specifically, microtonal 

deviations ≤ 50c/a, where a is the factor of the 

individual augmentation) which, when augmented, 

remain proportionally the same. Since the augmented 

series are harmonically different from the overtone 

series, the reduction of microtonal mistakes is more a 

positive side effect than a practical tool of 

constructing a microtonally more accurate harmonic 

series within equal temperament.    

3.2  Structure 

The second main feature of the system relates to the 

already mentioned structure of the harmonic series 

and the relationships among the notes of the series.  

Since proportions remain the same, it is equally true 

for the augmented harmonic series as it is for the 

natural harmonic series, that each note of the series is 

also a fundamental of a new series, in this case an 

augmented one.  If n indicates the position of the note 

in a series, it follows that a new series, the 

transposition of the given augmented series, equals n, 

2n, 3n, 4n, 5n, etc.  Likewise, the relationship by 

powers of two (n, 2n, 22n, 23n, 24n, 25n, etc.) in the 

augmented harmonic series always produces equal 

intervals.  Unlike in the harmonic series, these 

intervals are not perfect octaves, but rather other 

intervals determined by the initial augmentation (see 

Figure 2).  In each augmented series, the interval 

determining the above-mentioned order by powers of 

two, presents the most significant building block of 

the series and is, therefore, referred to as the primary 

interval or a “pseudo-octave” of the series.  I also 

believe that it is the most significant element 

determining our perception of different augmented 

series. With easier practical application and 

composition/performance demands in mind, I like to 

work with augmentations based on tempered primary 

intervals.  For example, when the intervals of the 

harmonic series expressed in cents are multiplied by 

13/12, the primary interval consists of exactly 13 half-

steps (m9), see Figure 1; when multiplied by 7/6, the 

primary interval consists of exactly 14 half-steps 

(M9); when multiplied by 5/4, the primary interval 

consists of exactly 15 half-steps (m10); when 

multiplied by 2, it is exactly two octaves, etc.  If 

primary interval recurrences in the augmented 

harmonic series can be compared to the octave 

repetitions in the harmonic series, one can view all 

intervals as potentially equal.  As such, one can 

replace doublings in octaves with “doublings” in the 

primary intervals (see Figure 3).  So far, I have 

worked with fifteen different augmentations in my 

orchestral, chamber and electronic music.  Figures 1, 

2 and 3 illustrate one such augmentation.  As evident 

from above, the presented augmentation is based on 

the primary interval of 13 half-steps (m9) and is, 

therefore, the smallest augmentation in the line of 

augmented series based on the tempered primary 

intervals.  Therefore, it does not significantly 

diminish microtonal deviations when applied to equal 

temperament.  Due to its applicable registers, 

however, it allows one to apply a rather large portion 
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of the series. (See Figure 3, a music example showing 

the use of the augmented series in my orchestral/vocal 

piece Ashen Time.  In this example, I utilize the first 

32 notes of the series: fundamentals = C and C1). 

 

 

3.3  Modulations  
There is, of course, an infinite number of possible 

augmentations.  If ignoring extreme registers and 

counting only the augmented series with tempered 

primary intervals, one can count 144 augmentations 

before all the notes of the series are the octave 

transpositions of the fundamental (the intervals are 

augmented twelve times). There are 156 

augmentations before the order of a given series 

repeats (the intervals are augmented thirteen times).  

Since one can choose to modulate from one series to 

another, it is important to mention exponential 

relationships between various augmentations.  When 

a given series is multiplied by a positive integer, the 

new augmented series consists of notes ordered in the 

given series by the exponent of the same integer.  It 

means that the integral augmentations result in the 

series consisting exclusively of the notes found in the 

initial series and might be, as such, viewed as sub-

series of the initial series rather then new 

augmentations. (Of course, when working with 

augmentations of which primary intervals consist of 

any number of octaves, the new series will be a sub-

series of the harmonic series itself; see example 

below.)  If the factor of augmentation is two and 

therefore the intervals double in size, the notes of the 

new series (with the same fundamental) relate to the 

notes of the initial series by the exponent of two.  For 

example, if we use C2 as a common fundamental and 

compare the augmented series presented in Figure 1 

with the augmented series based on the primary 

interval of 26 half-steps (M16): C2, D, f+21c, e1, 

c2+36c, g2+21c, c#3, f#3, a#3+42c, d4+36c, f#4-6c, 

a4+21c, c5+20c, d#5, f#5-43c, g#5, etc.; in other 

words, if we compare the series in a 2:1 ratio, we see 

that the second note of the second series equals the 

fourth (22) note of the first series, the third note equals 

the ninth (32), fourth the sixteenth (42), etc.  If the 

factor of augmentation is three (a = 3) and therefore 

the intervals of the augmented series triple in size, the 

new series will be related to the initial one by the 

 
2 Since all the series of the system are theoretically infinite, one can in 

practice apply only segments of the series and not, of course, the entire 

series.   

exponent of three.  For example, compare the 

harmonic series (fundamental = C2) with the 

augmented series based on three octaves: C2, c, 

a1+6c, c3, c4-42c, a4+6c, f5+7c, c6, f#6+12c, c7-42c, 

f7-47c, a7+6c, c#8+20c, f8+7c, a8-36c, c9, etc.  It 

follows that the lower the factor of augmentation, the 

larger the portion of common (“pivot”) tones there is 

between the two series (practically speaking, between 

the equal segments2 of the two series) and the easier 

it is to “modulate” from one series to another.     

 

 

3.4  Transpositions  

Each augmented version of the harmonic series can 

also be transposed.  Figure 2 shows an augmented 

harmonic series (fundamental = C2) transposed by 

using notes of the chromatic scale in the tempered 

system as new fundamentals.  For the purpose of 

modulating, the figure highlights “pivot tones” 

connecting the initial augmented series with its 

closely related transpositions (“related keys”).  To be 

exact, it highlights transpositions based on the 2nd, 4th 

(22), 8th (23), 16th (24) and 32nd (25) note of the initial 

series (the order of notes is clearly related by powers 

of two).  In Figure 2, I also outline the transposed 

series of which the fundamental is the third note of 

the initial augmented series.  These transpositions 

were selected because comparatively to the 

relationship between the harmonic series and 

traditional harmony, they correspond to the tonic and 

dominant functions.  Since each note of the series is a 

fundamental of a new series that is an exact 

transposition of the given series, and since any of 

these new series relates to the initial series by the 

order of n, 2n, 3n, 4n, 5n, etc., it follows that the 

smaller the n, the larger the portion of common notes 

there is between a transposed and a given series.  

Since the relationship between a given series and its 

transpositions is stronger when the fundamentals of 

the transpositions are the lower notes of the given 

series, the enclosed figure highlights “pivot tones” 

only in the transpositions based on the second and 

third note of the given series.  (In the case of the 

transposition based on the third note of the initial 

series, one has to take into account the microtonal 

deviation of the new fundamental.)  By applying the 

same process, one can easily find other links between 
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the series.  The transposition based on the second note 

of the given series presents 1/2 of the series, and the 

transposition based on the third note of the given 

series presents 1/3 of the series.  On the other hand, 

the transpositions based on the 4th, 8th, 16th and 32nd 

“partial” of the initial series, are in Figure 2 not 

highlighted because of their quantitative value of 

common notes, but because of their significance in 

relation to equal temperament.  While they present 

only 1/4, 1/8, 1/16, and 1/32 portion of the series, their 

fundamentals are always tempered pitches with no 

microtonal deviations.  The number and structure of 

closely related transpositions vary from one 

augmented series to another, and one may choose to 

group augmented series based on their models of 

related transpositions.  For example, there is an 

obvious parallel between transposition models found 

in the augmentations based on primary intervals of 

which the number of half-steps differs by multiples of 

twelve (for example: c1-c#2, c1-c#3, c1-c#4, etc.).  It 

means that the transposition model of the augmented 

series illustrated in Figure 2 resembles a transposition 

model of the augmentations based on the primary 

intervals of 25, 37, 49, etc. half-steps.  Likewise, 

transposition models of augmented series based on 

inverted primary intervals (± multiples of twelve half-

steps) demonstrate similarities in structure.  For 

example, the transposition model illustrated in Figure 

2 is a mirror picture of the transposition model 

produced by the augmentations based on the primary 

intervals of 23, 35, 47, etc. half-steps. 

 

 

3.5  Determining Frequencies  

All the examples in the enclosed figures are expressed 

in cents.  In order to express the notes of the 

augmented series in frequencies, one should use again 

the formula: log f2/f1 = c/3986 (or logf2 - logf1 = 

c/3986).  Likewise, the frequencies of the pitches in 

the augmented series are defined by the frequency of 

the fundamental multiplied by a serial number of the 

given note raised to a (where a is the augmentation of 

the augmentation).  For example, if n again represents 

a serial number of a frequency and if intervals of the 

series, expressed in cents, are augmented by 5/4, it 

follows that the frequencies of the augmented series 

equal f1 x n5/4.  Similarly, when intervals are 

augmented by 2, the new frequencies equal f1 x n2, or 

when intervals are augmented by 3, the new 

frequencies equal f1 x n3, etc.  (The last two examples 

also explain previously mentioned exponential 

relationships in integral augmentations.)  In relation 

to the frequencies, one can conclude that the process 

of the augmentation applied in this system transforms 

the linear function determining the harmonic series 

into exponential functions determining the 

augmented series. 

 

 

3.6  Analytical Model  
In the lower half of Figure 1, I illustrate the way I 

analyze an augmented series before using it in a 

composition.  Although my analysis is modeled after 

the presumed relationships between the harmonic 

series and the Western tonal system, I rarely apply 

such rigid concepts to my music.  I prefer to explore 

unique characters of new music materials.  The brief 

analysis in Figure 1 shows: the modes derived from 

the first sixteen notes of the series; the chords derived 

from the first six notes of the series; and quasi tonic-

dominant progressions corresponding to the position 

of the implied tonic/dominant triads as found in the 

harmonic series.  The fundamental of the series is 

treated as a quasi tonic.  All mentioned modes and 

chords are always determined by both the octave 

repetitions and primary interval recurrences.  As 

stated previously, the function of the primary interval 

recurrences can be in this system compared to the 

octave repetitions.  As such, there are always at least 

two main interpretations of the pitches in the 

augmented series of the system.  The first, more 

traditional, interpretation views octaves as doublings, 

while the second one treats primary intervals as such.  

Figure 1 concludes by expressing the intervals of the 

series in the numerical values that are more suitable 

for rhythmic/structural applications. 

 

 

4  Conclusion and Future Directions  
There are many ways of interpreting various 

parameters of my system.  In relation to the registers, 

the note/segments of the series can remain in their 

initial form, or they can be transposed.  Modes/chords 

(excluding primary interval recurrences, octave 

repetitions, both or neither) may or may not consider 

microtonal deviations.  (Figure 3 illustrates the use of 

an augmented series in an orchestral medium where, 

for practical reasons, I avoid working with 

microtones.  In order to compensate for the 

microtonal inaccuracies, I colored the higher notes of 

the series with glissandos in violins.)  Chord 

progressions and modulations (to other 
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transpositions, other augmentations or both) can be 

modeled after the Western tonal system (considering 

its presumed ties with the harmonic series) or they can 

exist independently.  (Figure 3 illustrates quasi tonic-

dominant progressions in lower strings and brass.)  In 

addition, one can search for ties with various music 

systems created outside the Western music tradition 

and look for parallels between the proposed micro-

tonal models and various non-tempered tuning 

systems practiced around the world. The 

mathematical structure of the augmentations can be 

used in relation to melody, harmony, rhythm, tempo 

and form. Most importantly, it can be used for pitch 

mapping and building new electronic sounds. One 

can continue the series above the 32nd “partial” and 

apply the process of the augmentation to the series of 

frequencies below the fundamental (augmented sub-

inharmonic spectra). It is equally possible to create 

diminished forms of harmonic series and apply 

similar compositional strategies to a process of 

diminution.  

        Empirical studies could further evaluate our 

perception of “pseudo-octaves” and new consonant 

orders in the context of compositions where the 

spectrum is precisely linked to the tuning through the 

process of the augmentation described in this paper.  

It is my hypothesis that the interaction between the 

tunings of the given augmented series and their 

corresponding spectra shaping their timbres would tilt 

the consonant effect in favor of new primary intervals 

and create interval hierarchy unique to each 

individual augmentation. Mathews and Pierce’s3 

(1980) limited testing of the stretched harmonic 

theory and, most importantly, groundbreaking 

research by Sethares4, provide validity to my theory.   

In Augmentation Matrix, the characteristics 

of the new series and the relationships between them 

are determined by the mathematical restructuring of 

the harmonic series. Acoustic results of different 

augmentations offer an endless number of unique 

sound structures, harmonies and compositional 

interactions allowing one to create new or “translate” 

old musical “languages.”  The system is a sort of 

numerological game or a matrix of infinite number of 

augmentations derived from the integer frequency 

ratios.  

 
3 "Our experiments do not decide finally among three views of harmony: 
that harmony depends on a fundamental bass or periodicity pitch 

(Rameau), that harmony depends on the spacing of partials (Helmholtz 

and Plomp) or that harmony is a matter of brainwashing." Matthews, Max 

V. & Pierce, John R. "Harmony and Harmonic Partials," Journal of the 
Acoustical Society of America, 68 (Nov. 1980):1252-1257.    
4 Sethares W.A. (2005): Tuning Timbre Spectrum Scale, Springer, 

London.   
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Fig. 2 
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